利用机器学习进行人脸468点的3D坐标检测,并生成3D模型
上期文章,我们分享了,MediaPipe Face Mesh是一种脸部几何解决方案,即使在移动设备上,也可以实时估计468个3D脸部界标(dlib才能检测出68点)。它采用机器学习(ML)来推断3D表面几何形状,只需要单个摄像机输入,而无需专用的深度传感器。该解决方案利用轻量级的模型架构以及整个管线中的GPU加速,可提供对实时体验至关重要的实时性能。本期我们介绍一下代码如何实现
继续阅读上期文章,我们分享了,MediaPipe Face Mesh是一种脸部几何解决方案,即使在移动设备上,也可以实时估计468个3D脸部界标(dlib才能检测出68点)。它采用机器学习(ML)来推断3D表面几何形状,只需要单个摄像机输入,而无需专用的深度传感器。该解决方案利用轻量级的模型架构以及整个管线中的GPU加速,可提供对实时体验至关重要的实时性能。本期我们介绍一下代码如何实现
继续阅读MediaPipe Face Mesh是一种脸部几何解决方案,即使在移动设备上,也可以实时估计468个3D脸部界标。它采用机器学习(ML)来推断3D表面几何形状,只需要单个摄像机输入,而无需专用的深度传感器。该解决方案利用轻量级的模型架构以及整个管线中的GPU加速,可提供对实时体验至关重要的实时性能。
继续阅读MediaPipe 是一款由 Google Research 开发并开源的多媒体机器学习模型应用框架。在谷歌,一系列重要产品,如 、Google Lens、ARCore、Google Home 以及 ,都已深度整合了 MediaPipe。
继续阅读本文利用人工智能技术,给图片或者视频添加马赛克,避免自己出镜的尴尬,再也不用担心朋友圈屏蔽老爸老妈了。
继续阅读通过往期的文章分享,我们分享了人脸识别的前2个步骤,人脸数据的提取,人脸数据的神经网络训练,本期是人脸识别的最终章,通过前期文章训练的人脸数据模型,进行人脸的识别。
继续阅读上期文章我们分享了如何获取人脸数据以及保存人脸数据,有了上次搜集的人脸数据集,我们就可以对人脸的数据进行神经网络的训练
继续阅读通过往期的分享,我们了解到人脸识别的大概过程,主要包括:
1、人脸图片的搜集(原始数据)
2、从图片中识别到人脸
3、人脸数据提取
4、人脸数据保存
5、从图片或者视频中检测到人脸
6、人脸数据提取
7、被识别的人脸与数据库中的数据一一对比,识别出人脸
Dlib是一个现代的C ++工具包,包含机器学习算法和工具,用于在C ++中创建复杂的软件来解决实际问题。它广泛应用于工业界和学术界,包括机器人,嵌入式设备,移动电话和大型高性能计算环
继续阅读