MediaPipe 集成人脸识别,人体姿态评估,人手检测模型
MediaPipe 是一款由 Google Research 开发并开源的多媒体机器学习模型应用框架。在谷歌,一系列重要产品,如 、Google Lens、ARCore、Google Home 以及 ,都已深度整合了 MediaPipe。
继续阅读MediaPipe 是一款由 Google Research 开发并开源的多媒体机器学习模型应用框架。在谷歌,一系列重要产品,如 、Google Lens、ARCore、Google Home 以及 ,都已深度整合了 MediaPipe。
继续阅读MediaPipe是专门为利用加速推理(例如GPU或CPU)的复杂感知管道而设计的开源框架,已经为这些任务提供了快速,准确而又独立的解决方案。将所有这些实时地组合成一个语义上一致的端到端解决方案是一个独特的难题,需要同时推理多个相关的神经网络。
继续阅读准确可靠的车道检测是车道保持(LK)、变道自动化(LCA)和车道偏离警告(LDW)功能的关键特性。车道检测的研究可以追溯到20世纪80年代。世纪之交后,LDW和LK已经商业化,有些车辆甚至有LCA。DARPA和早期ADAS产品发起的自动驾驶挑战进一步推动了车道检测系统的发展。
继续阅读我们都知道正方形(长方形)的中心是2条对角线的交点,圆的中心是一个圆的圆心,如何在对象检测以及图片检测与识别领域,判断一个形状的中心,便是计算机视觉领域中的一个基础检测
继续阅读blob是图像中一组共享的区域,它们具有一些共同的属性(例如灰度值,形状,尺寸等)blob检测的目的是识别并标记一些特定区域,blob检测在自动化工业领域比较常见。OpenCV提供了一种方便的方法来检测blob并根据不同的特征对其进行过滤。那就是SimpleBlobDetector检测算法
继续阅读前几期的视频,我们分享了python代码实现的魔幻换天的视频特效,如何使用python代码实现?本期文章我们简单介绍一下工作原理。
继续阅读如何使用opencv来进行条形码的检测,毕竟超市里面的物品都是有价格条形码,如何进行opencv条形码的检测,便成了无人超市需要重点关注并需要解决的问题
继续阅读背景分割技术,讲的明白一些就是收集背景图片,此图片作为参考图片,当有移动物体进入背景后,实时对当前视频帧图片与背景帧图片进行对比,进而检测出运动物体的存在,并实时进行追踪
继续阅读上期文章,我们介绍了YOLOV4对象检测算法的模型以及基本知识,哪里还进行了图片的对象检测,如何使用YOLOV4进行视频检测与实时视频检测呢?毕竟我们绝大多数的需求必然是视频的实时对象检测
继续阅读YOLO系列对象检测算法,算是人工智能技术领域的一匹黑马,当开发者宣布不再为YOLO系列检测算法更新时,很多开发者瞬间失去了”精神食粮“。突然,当YOLOV4检测算法发布的时候,让很多开发者喜出望外。
继续阅读